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Abstract 

Wind energy has become one of the leading producers in renewable energy. There will be 

a never-ending demand for energy and being able to extract clean renewable energy is a very 

important strategy to combat climate change. Research suggests fossil fuels have harmful 

impacts on the environment, and many in opposition of wind farm development believe wind 

energy contributes as well. For example, habitat loss, disruption to migratory patterns, and 

simply being unaesthetically pleasing are some of the dislikes those in opposition have. There 

have been several case studies that focus more on public perception of wind farms, which 

analyze the attitudes of the public based off multiple social, environmental, and economic 

variables. This study, however, solely aims to understand how certain characteristics may 

influence the development of new wind farms and compare the results across the study regions. 

The objective of this study is to analyze twelve different socioeconomic variables and one 

environmental dataset across Iowa, Oklahoma, and Texas to determine if there are any influences 

on wind farm development. Additionally, this study will determine if there is spatial clustering 

among wind farms and whether it’s due to a random process. Lastly, the results of this study will 

show how socioeconomic and environmental characteristics alone don’t provide enough 

evidence to predict the likelihood of future wind farm development. While there may be 

numerous studies addressing the impacts of common factors, these studies tend to only focus on 

each factor individually. Through a widely used mixed methods approach of geospatial and 

statistical analysis, this study effectively analyzes combined qualitative and quantitative data 
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pertaining to wind farms and is utilized to evaluate and organize the results (Leech et al., 2010). 

This type of research will be important in fully understanding what may impact or influence 

wind farm development apart from public perception. 

Introduction 

According to the Energy Information Administration (EIA), fossil fuels accounted for 

approximately 68% of greenhouse gas emissions in the United States in 2020, with 

approximately 32% of emissions from electricity generation (EIA, 2021). To combat climate 

change, wind power development can be a vital source of renewable electricity generation and 

contribute to reducing global greenhouse gas emissions (Peri and Tal, 2020). Thus, adopting 

non-carbon-emitting energy sources is essential to minimize the impacts of climate change 

around the world (Pavlowsky and Gliedt, 2021). Wind energy accounts for 8.4% of the total 

electricity supply in the United States and is expected to grow continuously due to its low cost 

(Hamilton et al., 2020). However, while the development of wind energy receives broad support, 

the ongoing controversy over the benefits and uncertainty of how it affects landowners continues 

to create opposition in wind producing communities (Pavlowsky and Gliedt, 2021). As of 

January 14, 2022, there are 70,808 wind turbines located throughout the United States, according 

to the U.S. Wind Turbine Database from the United States Geological Survey. Wind power has 

been around for many centuries and was developed to generate electrical power over 130 years 

ago (Leung and Yang, 2012). Throughout those years, wind power has performed well 

contributing to the United States total electricity generation, but opponents of wind power 

believed that environmental impacts include noise, visual, or climate impacts (Leung and Yang, 

2012). Such an environmental impact is possible, as roads and transmission lines associated with 

wind development represent a potential threat and to the turbines themselves (Kuvlesky Jr. et al., 
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2007). However, this study focuses on perceptions, socioeconomic, and physical impacts of 

existing wind turbines, and the possible effects on development of new wind farms. Additionally, 

there are concerns that wind turbines negatively impact property values, though, research 

suggests that the sales price of residential properties was not significantly impacted by turbine 

adjacency (McCarthy and Balli, 2014; Vyn and McCullough, 2014).  

Several studies have investigated the planning and placement of wind farm development 

in multiple countries (Peri and Tal, 2020; Santos-Alamillos et al., 2014; Stefanakou et al., 2019). 

Similar to other countries, the United States faces obstacles pertaining to wind turbine placement 

relative to land suitability meaning a set of comprehensive factors (Peri and Tal, 2020), such as 

demographics, economics, policies, and topography shape the way engineers and policy makers 

think about where to place large wind turbines (Bennui et al., 2007). Researchers have attempted 

to provide useful analysis on wind farm development via the use of Geographic Information 

Systems (GIS) which can be used to develop a framework on how to evaluate site suitability and 

establish feasible land that may be available for potential wind turbine development (Rodman 

and Meentemeyer, 2006). However, providing an objective, data-driven analysis may prove to be 

inefficient to decision makers. There remains a correlation between wind turbine acceptance and 

wind turbine development. A common issue with respect to wind turbine placement and wind 

farm development is the perception of the public. New technologies often spur public reactions, 

therefore it is imperative to understand the public’s response to these new ideas (Boudet, 2019). 

While public perception can potentially influence decision making, research on wind energy and 

its contribution to cutting greenhouse gas emissions has the potential to mitigate opposition over 

time (Pasqualetti, 2001). Therefore, through a geospatial and statistical analysis of quantitative 

and qualitative data, communities across the country may become more receptive to ideas of 
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wind farm development (Greene and Geisken, 2013). Community engagement will ultimately be 

a key factor to a sustainable future of wind-generated electricity (Peri and Tal, 2020). 

 Much of the research conducted suggests an analysis that consists of meaningful results, 

“can be helpful for permitting agencies, local planners, and engineers engaged in permitting 

processes, zoning ordinances, and the development of regulations for the wind farms” (Kumar 

and Sinha, 2016). While there is plenty of research on wind energy and wind farm development, 

many are perception-based case studies and don’t focus specifically on other potential factors 

that could be used to compare similar wind producing communities across the United States. 

Additionally, despite research on wind energy and farms in select states, there remains a need for 

extensive analysis on wind turbine development that could be used to address the obstacles 

policy makers and engineers face, across the United States more broadly. Furthermore, there may 

be limitations to the analysis that differ across multiple landscapes and communities effecting the 

outcomes because those ideas may not be fully considered (Greene and Geisken, 2013; 

Pavlowsky and Gliedt, 2021). With such a diverse scope of research and variables that go into 

suitable land for wind farm development, a mixed methods approach provides a unifying 

framework designed to validate information for all types of data and verify that the results are 

significant and meaningful.  

Data and Methods 

This study focuses on three states: Iowa, Oklahoma, and Texas. These three states are 

among the leading wind producers across the country. Overall, most wind turbines are in clusters 

of approximately 70-93 turbines throughout the central United States (Table 4). However, in 

certain areas there can be a maximum of approximately 193 wind turbines per cluster. In western 

Oklahoma, the Weatherford wind farm is located on about 5,000 acres of land which include 98 
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GE 1.5 MW turbines with a rated capacity of 147 MW of electricity and generates enough 

electricity to power approximately 44,000 homes. Each wind turbine is approximately 262 feet 

(80 meters) tall from ground to the hub center of the blades. On average, the distribution of wind 

turbine height across this study region ranges from 80 meters to 120 meters high. Most wind 

turbines located in Texas are also GE wind turbines and are similar in height compared to those 

in Oklahoma. In Iowa, you will find wind turbines manufactured by GE and other such 

companies.  Broadly, turbines differ by manufacturer across different regions of the United 

States. A review of the metadata in the United States Wind Turbine Database dataset (USGS 

01/14/2022), indicates a difference in the height of turbines across regions. This is important 

because wind turbines are generally placed in locations of higher elevation to increase the daily 

experience of consistently strong winds. The central plains are geographically significant given 

the winds that come off the Rocky Mountains as the jet stream moves from west to east. In states 

like Oklahoma and Texas there are generally less trees given the environment. Furthermore, the 

map generated by the National Renewable Energy Laboratory (NREL 2017; Figure 4) combined 

with a favorable wind environment, may contribute to promising energy production making this 

region ideal due to its overall flat and rural terrain (Woody, 2020).  

There are multiple quantitative and qualitative datasets analyzed in this study. The United 

States Wind Turbine Database (USWTDB) dataset (United States Geological Survey, 

1/13/2022), in collaboration with the Lawrence Berkley National Laboratory (LBNL) and the 

American Wind Energy Association United States Wind Turbine Database. The latest release on 

January 14, 2022, of data includes 70,808 turbines covering 44 states (plus Guam and Puerto 

Rico). The most recent turbines added to the USWTDB became operational as recently as the 

second quarter of 2021, with approximately 1,097 new turbines from the third quarter of 2021. 
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The oldest turbines in the data set were installed prior to 1990, as this dataset ranges from 1982 

to 2021. The data are available as a shapefile and in vector data format. A shapefile stores non-

topological geometry and attribute information for the spatial features in a data set. The 

geometry for a feature is stored as a shape comprising a set of vector coordinates. The USWTD 

shapefile contains point data with multiple attributes such as coordinates, state, county, turbine 

manufacturer, turbine height in meters, and date the turbine was built/became operational. The 

wind turbine dataset is used to map existing wind turbines, to analyze the clustering and point 

intensity of wind turbines geospatially and statistically. Additionally, it is used to perform a 

geospatial analysis in relation to nearby communities and to measure adjacency in meters. 

Socioeconomic data comes from the US Census Bureau. In this study, there are twelve variables 

which include: Population, Total Housing Units, Educational Attainment, Degree Status 

(Bachelor’s or Higher), Employment, Employment in Agriculture, Total Houses Built, House 

Built 2014 to Later, Houses Built, 2010 to 2013, Houses Built 2000 to 2009, House Value 2010 

(Median Dollars), and House Value 2020 (Median Dollars). To analyze land cover change, 

National Land Cover datasets ranging from 2001 to 2019 from the Multi-Land Characteristics 

Consortium (MRLC) were used. Furthermore, TIGER/Line Shapefiles from the U.S. Census 

Bureau were used to map and perform analysis at the census tract level which useful for better 

sample sizes. 

A mixed-methods approach is applied, consisting of two parts: a geospatial and statistical 

analysis of socioeconomic and environmental data from within the study regions. Using this 

approach, I will analyze the clustering of existing wind farms and the possible relationship 

between wind farm development and community adjacency. I adopted a mixed approach to 1) 

facilitate comparison with previous studies followed (Arun, 2017; Greene and Geisken, 2013; 
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Woody, 2020), and 2) because in research a mixed methods approache enhances the scope and 

improves the analytical power of a study (Sandelowski, 2000). In research that requires more 

than one approach, the mixed methods approach proves to be more adequate in gauging the logic 

than would a one method approach (Palinkas et al., 2015). 

Given the high density of wind turbines in western Texas, northwestern Oklahoma, and 

northern Iowa, I expect new development of wind turbines to expand outwards into less dense 

areas. Therefore, certain criteria such as economical (distance to community, houses built, house 

value), social (residential density or population), and environmental (land cover change) can be 

considered as a Multi Criteria Decision Making (MCDM) problem and can be used to determine 

wind farm land suitability (Al-Yahyai et al., 2012). Land suitability is defined here as the 

applicability of a specific type of land use. While similar research uses a criterion classification 

index to analyze wind farm suitability, this study will use a geospatial approach to address 

commonly researched environmental, and socioeconomic factors. In addition to the geospatial 

approach, a statistical analysis of wind turbine locations (Figure 1) and US census variables 

(Table 1,2, and 3) will be used to address the clustering of wind farms, distance between wind 

turbines, distance from adjacent communities, and to test for spatial autocorrelation of population 

and total houses-built variables. This study builds upon (Fast and Mabee, 2015; Greene and 

Geisken, 2013; Groth and Vogt, 2014; Hoen et al., n.d.; Jacquet, 2012; Rodman and 

Meentemeyer, 2006; Slattery et al., 2012) to test the assumption that communities that have 

similar characteristics as the ones with nearby wind farms, should be able to gain information 

and apply it towards future wind farm development. 

 To allow for a clean analysis, the data must be managed properly so that none of the data 

gets lost or ingested wrongly. Most of the shapefiles used in this study were ingested into ESRI’s 
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ArcMap, which allowed for manipulation and proper reprojection. A projected coordinate system 

was used to print maps and successfully calculate measurements in the statistical analysis. For 

the geospatial portion of this study, data was projected and then mapped in Arcmap. There were 

additional figures that were produced using R Studio. The statistical analysis of this study was 

performed in R Studio in which each dataset was carefully ingested into R Studio and organized 

in a way that made working with the data clear and concise. Beginning with the statistical 

analysis, a general analysis which included looking at the five number summaries of each of the 

variables provided insight of how this data initially varied spatially. The wind turbine dataset 

was filtered into three separate categories that corresponded with each of the three study regions. 

Simple functions were used to group, summarize, and omit any null values in each of the three 

divided up wind turbine data tables. All the twelve socioeconomic variables were mapped using 

ggplot in R Studio. To analyze the spatial clustering of wind turbines and test the hypothesis of 

Complete Spatial Randomness (CSR), a point pattern analysis method was used. The F function 

can be used to see how clustered a point pattern or dataset is clustered. However, to understand if 

the patterns being analyzed are statistically significant, a Monte Carlo Simulation on the F 

function can be used. This method draws boundaries around the top and bottom functions and 

forms a Monte Carlo envelope with “acceptance intervals” which mean the range of values that 

are not statistically different from the null hypothesis or completely random. Furthermore, this 

type of simulation allows for a point pattern to be modeled and calculates the probability a point 

pattern was generated by some random process.  

Point process models were fitted to each of the divided-up wind turbine data tables. 

Additionally, another data table was joined to the three wind turbine data tables to create one 

data table containing wind turbines and population data per study region. This was done to 



Mammen 

 9 

explore the relationship that population, more specifically urban vs rural, has on wind farms. The 

fitted point process models show that a particular point pattern may vary spatially due to some 

covariate influence. The model then suggests that some other process may be at work leading to 

the analysis of spatial autocorrelation between the variables. Lastly, the national land cover 

datasets ranging from 2001 to 2009 were put through a raster analysis in R Studio which 

analyzed land cover change across each of the study regions in comparison to wind turbine 

locations. 

Results 

 The results of this study were very useful in understanding the influences that certain 

socioeconomic and environmental characteristics have on wind farm placement. The results seen 

in (Table 1,2, and 3) provide statistical information about the characteristics in each study region. 

The population means were interesting because they compared similarly with an average of 

3,000 or more people per census tract, with Texas having the higher average of the two. This 

should be assumed since this state is larger in area than the two other study regions. This is 

useful because according to the U.S. Census Bureau in 2010 an area is identified as “urban” if 

there are more than 2,500 people in an urban cluster or urbanized area. This alone shows that 

population is one variable that drives this spatial process. Additionally, from (Table 1,2, and 3) 

the House Value from 2010 to 2020 increases. However, this could be due to a multitude of 

factors, the housing market increases in value, the price for materials, or maybe some other 

process that this study does not dive into. Similar to (Hoen et al., 2009), there is no statistically 

significant evidence to show that wind farm development has a significant impact on nearby 

house prices.  
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On average there are approximately 60-90 wind turbines per project across the study 

regions, with the minimum being one and the maximum being about 140 turbines (Table 4). In 

Iowa and Oklahoma there are approximately 4,000-6,000 total turbines, whereas, in Texas there 

are approximately 17,000 turbines. Texas has a larger surface area than the other two study 

regions, so again this is to be expected. In Figures 6, 10, and 14 we see the U.S. wind turbine 

dataset overlayed with the joined total houses-built variable. This variable in addition to 

population appeared to be the most significant in terms of a geospatial analysis. In Iowa, we see 

that most of the houses built, surround the urban areas or cities given the relatively low values 

not near the wind turbines. Similarly in Texas we see the same thing as most of the wind turbines 

are out west in which the census tract shows lower corresponding population values. However, in 

Oklahoma this is not the case as higher values of total houses built appear denser throughout and 

specifically around some of the wind farm locations. The average distance from wind farm to 

adjacent community was approximately 12,000 meters or 7.8 miles (Table 5). Lastly, the 

geospatial analysis of wind turbines and wind farms across the study regions showed high point 

intensities and small mean nearest neighbor distances (Figures 1 and 2, & Table 6). It was 

obvious that the wind farms and wind turbines across the study regions were showed spatial 

clustering.  

 Figures 5, 9, and 13 indicate that the mean number of wind turbines per project appear to 

be increasing overtime, especially in the last ten years. Given the increasing number of wind 

turbines per project and the visually significant patterns that both population and total houses 

built indicate, a possible process may be at work. The Monte Carlo Simulation on the F function 

provided a statistically significant result. The wind farms in each of the study regions are 

clustered and by testing for complete spatial randomness (CSR), the null hypothesis was rejected 
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given the observed value nowhere near the expected value (Figures 8, 12, and 16 & Table 6). 

This can also be proven by looking at the mean nearest neighbor distances for all the study 

regions and compare against the simulated mean nearest neighbor distances. The mean nearest 

neighbor distances and simulated mean nearest neighbor distances are nowhere near each other, 

therefore, some other spatial process is at work. The fitted point process models (Table 7) show 

the point intensities at the census tract for the “rural” and “urban” classification given by the 

criteria from the US Census (2010). These point intensities aim to help identify what spatial 

process may be at play. After fitting these models, the results indicate the full model is the best 

model to go with (Table 7, highlighted in yellow). The AIC scores were calculated and given that 

the full model had the lowest AIC scores, we indicate that the full model is best fit because the 

AIC is measure of how well a statistical model fits a data set. This allows for the two variables, 

population and total houses built, to be tested for spatial autocorrelation. The results for all three 

study regions show a similar statistically significant p-value of less than 0.05 (Table 8 and 9). 

However, the R-squared values for all three are very small and would indicate that there is no 

linear relationship as it pertains to spatial variance across the study regions.  

 Lastly, in Figures 7, 11, and 15 the land cover gain and loss for each of the study regions 

show that from 2001 to 2019 there have been changes to the land use overtime. In Figure 11 we 

see that Oklahoma experiences the most change over that time. However, in Iowa and 

Oklahoma, there isn’t much change in land use and there are no visually significant observations 

in relation to the wind farms, to confidently say there is a process at work.  

Discussion 

 Overall, before this study was conducted it seemed plausible to be able to perform an 

analysis of a broad region of wind farms with a variety of socioeconomic and environmental 
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variables. However, as the study progressed, I realized the amount of data that this study was 

previously going to include just wasn’t possible given the time constraints for this research. 

Thus, the study region was narrowed down from eight total states down to three, Iowa, 

Oklahoma, and Texas. For this purpose of this study, I believe these three study regions were the 

best given their history in the wind industry and being the lead producers. Even still, the amount 

of data that was used in this study was to much as most of the variables were thrown out. There 

were several obstacles along the way as the initial idea for this research quickly evolved as the 

data was being analyzed. Initially, the goal was to provide an idea of how certain socioeconomic 

and environmental characteristics influence wind farm development. Additionally, given the 

expected results, was hopeful to be able to create a model that predicted the likelihood of wind 

farm development based off certain variables in the USWTB dataset. This wasn’t possible due to 

the dataset being updated frequently and the changes being made, therefore, this study aimed 

more towards understanding the potential influences certain characteristics have on wind farm 

development. 

 Unlike other research, this study was focused on the physical factors themselves rather 

than the ideas and attitudes of the public. Even though an argument can be made that most of the 

barriers engineers and policy makers face stem from the public. This study, however, was able to 

piece together some statistically significant results that show that there is some sort of physical 

process at work and for reasons that may not be as obvious than by looking at a map. There is 

significant proof that the number of wind farms per project are increasing, whether it be wind 

farms in general or that the intensity of wind turbines is increasing. There is also reason to 

believe that wind farms will continue to be developed in mostly rural areas, away from highly 

densely populated areas. While this study, couldn’t provide a prediction it certainly gave an 
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opportunity to be studied more harshly and frequently. Additionally, this study compared the 

results across all three study regions and though there are still more answers to be had it 

demonstrates the ability to study each region individually and understand how this work varies 

across the landscape. 

 There were several limitations in this study. The opportunity to have more time could’ve 

perhaps allowed the variables to be studied more deeply. During the analysis process there were 

several errors that were brought up in the code used to analyze the data. More knowledge and 

practice on the statistical analysis would’ve allowed for a more technical approach. Lastly, 

obtaining more statistically significant results, I believe would have enhanced the overall 

conclusions in this study. I think for anyone wanting to continue with this study, should consider 

the type of data they want to pull, limit the amount of data they are working with, and maybe 

conduct the analysis at a smaller level to achieve more statistically significant results this study 

aimed for. 

Conclusion 

 A mixed methods approach consisting of two parts, a geospatial and statistical analysis 

was utilized to understand the influence socioeconomic and environmental characteristics has on 

wind farm development. This study revealed that there is spatial clustering of wind farms in each 

of the study regions. In fact, there is more spatial clustering than expected under the null 

hypothesis for complete spatial randomness. The Monte Carlo simulation on the F function 

showed that the wind turbines are not clustered randomly and rather there is another spatial 

process at work. While population and total houses built are two socioeconomic variables that 

may have had a significant visual pattern as it relates to wind farm clustering, there was no linear 

relationship across the study regions. It is clear that a better understanding of the types of 
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socioeconomic variables may prove to be more statistically significant than those analyzed in 

this study. Land use change over time also didn’t prove to be statistically significant as there 

were no visual patterns in relation to the wind farms to indicate they had an impact on wind farm 

development. Additionally, while there has been an increase in House Value in median dollars 

over time, there is no evidence that shows wind farms have an impact on house prices. Overall, 

this study obtained clear and concise results that can be used by adjacent communities to better 

understand the influencing factors on future wind farm development. 
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Tables: 

Summary Statistics of Socioeconomic and Environmental Characteristics 
  Min Mean Max 

Population 0 3516 15301 
Housing Units 0 1571 6346 
Education Attn. 0 1749 7880 
Bachelor’s Degree or Higher 0 550.5 5136 
Employed 0 1799 8642 
Employed in Agriculture 0 67.46 603 
Houses Built 0 1571 6346 
Houses Built 2014 - Later 0 56.75 2237 
Houses Built 2010 - 2013 0 46.19 869 
House Built 2000 - 2009 0 170.83 2520 
House Value 2010 (Median Dollars) 227700 117299 412500 
House Value 2020 (Median Dollars) 51400 152084 750000 
Table 1: Five number summary of socioeconomic variables in Iowa. Data: US Census Bureau. 

Summary Statistics of Socioeconomic and Environmental Characteristics 
  Min Mean Max 

Population 0 3277 9906 
Housing Units 0 1445 3494 
Education Attn. 0 1654 5146 
Bachelor’s Degree or Higher 0 437.6 3739 
Employed 0 1476 5096 
Employed in Agriculture 0 64.2 741 
Houses Built 0 1445 3494 
Houses Built 2014 - Later 0 56.89 881 
Houses Built 2010 - 2013 0 56.3 1177 
House Built 2000 - 2009 0 191.3 1537 
House Value 2010 (Median Dollars) 17700 105254 415600 
House Value 2020 (Median Dollars) 31500 142721 769400 

Table 2: Five number summary of socioeconomic variables in Oklahoma. Data: US Census 
Bureau. 
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Summary Statistics of Socioeconomic and Environmental Characteristics 
  Min Mean Max 

Population 0 4152 19704 
Housing Units 0 1612 8846 
Education Attn. 0 2154 10541 
Bachelor’s Degree or Higher 0 678.7 5905 
Employed 0 1952 9196 
Employed in Agriculture 0 55.42 1461 
Houses Built 0 1612 8846 
Houses Built 2014 - Later 0 113.9 3667 
Houses Built 2010 - 2013 0 82.97 1822 
House Built 2000 - 2009 0 300.9 2187 
House Value 2010 (Median Dollars) 15400 133383 981800 
House Value 2020 (Median Dollars) 16500 204986 1951500 
Table 3: Five number summary of socioeconomic variables in Texas. Data: US Census Bureau. 

 

 

Study Area Turbine Statistics 

  
Years Constructed 

(Historical) 
Mean # of Turbines 

per project 
Std. dev. # of Turbines 

per project 
Total # of 
Turbines 

Iowa 1992-2021 69.79 51.15 6,148 
Oklahoma  1983-2021 65.45 31.01 4,905 

Texas 1999-2021 93.93 29.96 17,439 
Table 4: History of Wind Turbines. Data: USWTDB from USGS. 

 

 

Wind Farm Distances from Urban Areas 

  Min (meters) Mean (meters) Max (meters) Mean (Miles) 
Iowa 12,222 12,335 15,999 ~7.67 

Oklahoma 2,970 12,690 15,990 ~7.88 

Texas 1,202 11,398 15,999 ~7.08 
Table 5: Community adjacency, distance to wind turbines (meters). Data: USWTDB from 

USGS. 
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Point Pattern Statistics 

  Mean Nearest Neighbor Distance (m) Simulated MNND (m) 

Iowa 558.0749 82615.87 

Oklahoma 425.5609 150212.1 

Texas 398.3438 122614.2 
Table 6: Nearest neighbor distances. Data: USWTDB from USGS. 

 

Point Process Model Statistics 
  Iowa Oklahoma Texas 

Point Intensity (Rural) 0.000771167 6.84E-05 9.36E-05 
Point Intensity (Urban) 0.001568015 0.001084027 0.000411496 
AIC - Null Model (Rural) 51996.98 1823.617 141144.8 
AIC - Null Model (Urban) 96537.64 25032.98 231487.5 
AIC - Grad Model (Rural) 51689.24 1728.3 137502.7 
AIC - Grad Model (Urban) 96505.89 24696.95 224144.6 

AIC - Full model (Rural) 51110.34 1458.975 135213.3 
AIC - Full model (Urban) 90931.75 21104.85 222790.6 

Table 7: Fitted Point Process models. Data: USWTDB from USGS. 

 

Regression Model Statistical Analysis - Population 

  Iowa Oklahoma Texas 
R-squared 0.2485 0.1011 0.1806 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 
        

Regression Model Statistical Analysis - Houses Built 

  Iowa Oklahoma Texas 
R-squared 0.1211 0.07803 0.09497 

p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 
 

Table 8: Linear Regression model for Population Data: USWTDB from USGS. 

Table 9: Linear Regression Model Houses Built. Data: USWTDB from USGS. 
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Figures: 

 
Figure 1: US Wind Turbines. Data: USWTDB from USGS. 
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Figure 2: US Wind Turbines Density. Data: USWTDB from USGS. 
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Figure 3: Study Regions. Data: USWTDB from USGS. 
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Figure 4: Wind speed. Data from NREL. 
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Figure 5: Mean number of wind turbines per project in Iowa. Data: from USWTDB from USGS. 
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Figure 6: Houses Built and Wind farms in Iowa. Data: USWTDB from USGS and US Census 

Bureau. 
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Figure 7: Cropland gain and loss (land cover change) in Iowa.  Data: from USWTDB from 

USGS. 
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Figure 8: Monte Carlo Simulation on F function in Iowa. Data: USWTDB from USGS. 
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Figure 9: Mean Number of wind turbines per project in Oklahoma. Data: USWTDB from 

USGS. 
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Figure 10: Houses built and wind farms in Oklahoma. Data: USWTDB from USGS. 
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Figure 11: Grass Shrub loss and gain (land cover change) in Oklahoma. Data: USGS and 

MLCR. 
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Figure 12: Monte Carlo Simulation on F function in Oklahoma. Data: USWTDB from USGS 
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Figure 13: Mean number of wind turbines per project in Texas. Data: USWTDB from USGS 
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Figure 14: Houses Built and Wind Farms in Texas. Data: USWTDB from USGS 
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Figure 15: Cropland gain and loss (land cover change) in Texas. Data: USWTDB from USGS 
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Figure 16: Monte Carlo Simulation on F function in Texas. Data: USWTDB from USGS 

 


