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Abstract

Wind energy has become one of the leading producers in renewable energy. There will be
a never-ending demand for energy and being able to extract clean renewable energy is a very
important strategy to combat climate change. Research suggests fossil fuels have harmful
impacts on the environment, and many in opposition of wind farm development believe wind
energy contributes as well. For example, habitat loss, disruption to migratory patterns, and
simply being unaesthetically pleasing are some of the dislikes those in opposition have. There
have been several case studies that focus more on public perception of wind farms, which
analyze the attitudes of the public based off multiple social, environmental, and economic
variables. This study, however, solely aims to understand how certain characteristics may
influence the development of new wind farms and compare the results across the study regions.
The objective of this study is to analyze twelve different socioeconomic variables and one
environmental dataset across lowa, Oklahoma, and Texas to determine if there are any influences
on wind farm development. Additionally, this study will determine if there is spatial clustering
among wind farms and whether it’s due to a random process. Lastly, the results of this study will
show how socioeconomic and environmental characteristics alone don’t provide enough
evidence to predict the likelihood of future wind farm development. While there may be
numerous studies addressing the impacts of common factors, these studies tend to only focus on
each factor individually. Through a widely used mixed methods approach of geospatial and

statistical analysis, this study effectively analyzes combined qualitative and quantitative data
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pertaining to wind farms and is utilized to evaluate and organize the results (Leech et al., 2010).
This type of research will be important in fully understanding what may impact or influence
wind farm development apart from public perception.
Introduction

According to the Energy Information Administration (EIA), fossil fuels accounted for
approximately 68% of greenhouse gas emissions in the United States in 2020, with
approximately 32% of emissions from electricity generation (EIA, 2021). To combat climate
change, wind power development can be a vital source of renewable electricity generation and
contribute to reducing global greenhouse gas emissions (Peri and Tal, 2020). Thus, adopting
non-carbon-emitting energy sources is essential to minimize the impacts of climate change
around the world (Pavlowsky and Gliedt, 2021). Wind energy accounts for 8.4% of the total
electricity supply in the United States and is expected to grow continuously due to its low cost
(Hamilton et al., 2020). However, while the development of wind energy receives broad support,
the ongoing controversy over the benefits and uncertainty of how it affects landowners continues
to create opposition in wind producing communities (Pavlowsky and Gliedt, 2021). As of
January 14, 2022, there are 70,808 wind turbines located throughout the United States, according
to the U.S. Wind Turbine Database from the United States Geological Survey. Wind power has
been around for many centuries and was developed to generate electrical power over 130 years
ago (Leung and Yang, 2012). Throughout those years, wind power has performed well
contributing to the United States total electricity generation, but opponents of wind power
believed that environmental impacts include noise, visual, or climate impacts (Leung and Yang,
2012). Such an environmental impact is possible, as roads and transmission lines associated with

wind development represent a potential threat and to the turbines themselves (Kuvlesky Jr. et al.,
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2007). However, this study focuses on perceptions, socioeconomic, and physical impacts of
existing wind turbines, and the possible effects on development of new wind farms. Additionally,
there are concerns that wind turbines negatively impact property values, though, research
suggests that the sales price of residential properties was not significantly impacted by turbine

adjacency (McCarthy and Balli, 2014; Vyn and McCullough, 2014).

Several studies have investigated the planning and placement of wind farm development
in multiple countries (Peri and Tal, 2020; Santos-Alamillos et al., 2014; Stefanakou et al., 2019).
Similar to other countries, the United States faces obstacles pertaining to wind turbine placement
relative to land suitability meaning a set of comprehensive factors (Peri and Tal, 2020), such as
demographics, economics, policies, and topography shape the way engineers and policy makers
think about where to place large wind turbines (Bennui et al., 2007). Researchers have attempted
to provide useful analysis on wind farm development via the use of Geographic Information
Systems (GIS) which can be used to develop a framework on how to evaluate site suitability and
establish feasible land that may be available for potential wind turbine development (Rodman
and Meentemeyer, 2006). However, providing an objective, data-driven analysis may prove to be
inefficient to decision makers. There remains a correlation between wind turbine acceptance and
wind turbine development. A common issue with respect to wind turbine placement and wind
farm development is the perception of the public. New technologies often spur public reactions,
therefore it is imperative to understand the public’s response to these new ideas (Boudet, 2019).
While public perception can potentially influence decision making, research on wind energy and
its contribution to cutting greenhouse gas emissions has the potential to mitigate opposition over
time (Pasqualetti, 2001). Therefore, through a geospatial and statistical analysis of quantitative

and qualitative data, communities across the country may become more receptive to ideas of
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wind farm development (Greene and Geisken, 2013). Community engagement will ultimately be

a key factor to a sustainable future of wind-generated electricity (Peri and Tal, 2020).

Much of the research conducted suggests an analysis that consists of meaningful results,
“can be helpful for permitting agencies, local planners, and engineers engaged in permitting
processes, zoning ordinances, and the development of regulations for the wind farms” (Kumar
and Sinha, 2016). While there is plenty of research on wind energy and wind farm development,
many are perception-based case studies and don’t focus specifically on other potential factors
that could be used to compare similar wind producing communities across the United States.
Additionally, despite research on wind energy and farms in select states, there remains a need for
extensive analysis on wind turbine development that could be used to address the obstacles
policy makers and engineers face, across the United States more broadly. Furthermore, there may
be limitations to the analysis that differ across multiple landscapes and communities effecting the
outcomes because those ideas may not be fully considered (Greene and Geisken, 2013;
Pavlowsky and Gliedt, 2021). With such a diverse scope of research and variables that go into
suitable land for wind farm development, a mixed methods approach provides a unifying
framework designed to validate information for all types of data and verify that the results are

significant and meaningful.

Data and Methods

This study focuses on three states: lowa, Oklahoma, and Texas. These three states are
among the leading wind producers across the country. Overall, most wind turbines are in clusters
of approximately 70-93 turbines throughout the central United States (Table 4). However, in
certain areas there can be a maximum of approximately 193 wind turbines per cluster. In western

Oklahoma, the Weatherford wind farm is located on about 5,000 acres of land which include 98
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GE 1.5 MW turbines with a rated capacity of 147 MW of electricity and generates enough
electricity to power approximately 44,000 homes. Each wind turbine is approximately 262 feet
(80 meters) tall from ground to the hub center of the blades. On average, the distribution of wind
turbine height across this study region ranges from 80 meters to 120 meters high. Most wind
turbines located in Texas are also GE wind turbines and are similar in height compared to those
in Oklahoma. In Iowa, you will find wind turbines manufactured by GE and other such
companies. Broadly, turbines differ by manufacturer across different regions of the United
States. A review of the metadata in the United States Wind Turbine Database dataset (USGS
01/14/2022), indicates a difference in the height of turbines across regions. This is important
because wind turbines are generally placed in locations of higher elevation to increase the daily
experience of consistently strong winds. The central plains are geographically significant given
the winds that come off the Rocky Mountains as the jet stream moves from west to east. In states
like Oklahoma and Texas there are generally less trees given the environment. Furthermore, the
map generated by the National Renewable Energy Laboratory (NREL 2017; Figure 4) combined
with a favorable wind environment, may contribute to promising energy production making this

region ideal due to its overall flat and rural terrain (Woody, 2020).

There are multiple quantitative and qualitative datasets analyzed in this study. The United
States Wind Turbine Database (USWTDB) dataset (United States Geological Survey,
1/13/2022), in collaboration with the Lawrence Berkley National Laboratory (LBNL) and the
American Wind Energy Association United States Wind Turbine Database. The latest release on
January 14, 2022, of data includes 70,808 turbines covering 44 states (plus Guam and Puerto
Rico). The most recent turbines added to the USWTDB became operational as recently as the

second quarter of 2021, with approximately 1,097 new turbines from the third quarter of 2021.
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The oldest turbines in the data set were installed prior to 1990, as this dataset ranges from 1982
to 2021. The data are available as a shapefile and in vector data format. A shapefile stores non-
topological geometry and attribute information for the spatial features in a data set. The
geometry for a feature is stored as a shape comprising a set of vector coordinates. The USWTD
shapefile contains point data with multiple attributes such as coordinates, state, county, turbine
manufacturer, turbine height in meters, and date the turbine was built/became operational. The
wind turbine dataset is used to map existing wind turbines, to analyze the clustering and point
intensity of wind turbines geospatially and statistically. Additionally, it is used to perform a
geospatial analysis in relation to nearby communities and to measure adjacency in meters.
Socioeconomic data comes from the US Census Bureau. In this study, there are twelve variables
which include: Population, Total Housing Units, Educational Attainment, Degree Status
(Bachelor’s or Higher), Employment, Employment in Agriculture, Total Houses Built, House
Built 2014 to Later, Houses Built, 2010 to 2013, Houses Built 2000 to 2009, House Value 2010
(Median Dollars), and House Value 2020 (Median Dollars). To analyze land cover change,
National Land Cover datasets ranging from 2001 to 2019 from the Multi-Land Characteristics
Consortium (MRLC) were used. Furthermore, TIGER/Line Shapefiles from the U.S. Census
Bureau were used to map and perform analysis at the census tract level which useful for better

sample sizes.

A mixed-methods approach is applied, consisting of two parts: a geospatial and statistical
analysis of socioeconomic and environmental data from within the study regions. Using this
approach, I will analyze the clustering of existing wind farms and the possible relationship
between wind farm development and community adjacency. I adopted a mixed approach to 1)

facilitate comparison with previous studies followed (Arun, 2017; Greene and Geisken, 2013;
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Woody, 2020), and 2) because in research a mixed methods approache enhances the scope and
improves the analytical power of a study (Sandelowski, 2000). In research that requires more
than one approach, the mixed methods approach proves to be more adequate in gauging the logic

than would a one method approach (Palinkas et al., 2015).

Given the high density of wind turbines in western Texas, northwestern Oklahoma, and
northern Iowa, I expect new development of wind turbines to expand outwards into less dense
areas. Therefore, certain criteria such as economical (distance to community, houses built, house
value), social (residential density or population), and environmental (land cover change) can be
considered as a Multi Criteria Decision Making (MCDM) problem and can be used to determine
wind farm land suitability (Al-Yahyai et al., 2012). Land suitability is defined here as the
applicability of a specific type of land use. While similar research uses a criterion classification
index to analyze wind farm suitability, this study will use a geospatial approach to address
commonly researched environmental, and socioeconomic factors. In addition to the geospatial
approach, a statistical analysis of wind turbine locations (Figure 1) and US census variables
(Table 1,2, and 3) will be used to address the clustering of wind farms, distance between wind
turbines, distance from adjacent communities, and to test for spatial autocorrelation of population
and total houses-built variables. This study builds upon (Fast and Mabee, 2015; Greene and
Geisken, 2013; Groth and Vogt, 2014; Hoen et al., n.d.; Jacquet, 2012; Rodman and
Meentemeyer, 2006; Slattery et al., 2012) to test the assumption that communities that have
similar characteristics as the ones with nearby wind farms, should be able to gain information

and apply it towards future wind farm development.

To allow for a clean analysis, the data must be managed properly so that none of the data

gets lost or ingested wrongly. Most of the shapefiles used in this study were ingested into ESRI’s
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ArcMap, which allowed for manipulation and proper reprojection. A projected coordinate system
was used to print maps and successfully calculate measurements in the statistical analysis. For
the geospatial portion of this study, data was projected and then mapped in Arcmap. There were
additional figures that were produced using R Studio. The statistical analysis of this study was
performed in R Studio in which each dataset was carefully ingested into R Studio and organized
in a way that made working with the data clear and concise. Beginning with the statistical
analysis, a general analysis which included looking at the five number summaries of each of the
variables provided insight of how this data initially varied spatially. The wind turbine dataset
was filtered into three separate categories that corresponded with each of the three study regions.
Simple functions were used to group, summarize, and omit any null values in each of the three
divided up wind turbine data tables. All the twelve socioeconomic variables were mapped using
ggplot in R Studio. To analyze the spatial clustering of wind turbines and test the hypothesis of
Complete Spatial Randomness (CSR), a point pattern analysis method was used. The F function
can be used to see how clustered a point pattern or dataset is clustered. However, to understand if
the patterns being analyzed are statistically significant, a Monte Carlo Simulation on the F
function can be used. This method draws boundaries around the top and bottom functions and
forms a Monte Carlo envelope with “acceptance intervals” which mean the range of values that
are not statistically different from the null hypothesis or completely random. Furthermore, this
type of simulation allows for a point pattern to be modeled and calculates the probability a point

pattern was generated by some random process.

Point process models were fitted to each of the divided-up wind turbine data tables.
Additionally, another data table was joined to the three wind turbine data tables to create one

data table containing wind turbines and population data per study region. This was done to
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explore the relationship that population, more specifically urban vs rural, has on wind farms. The
fitted point process models show that a particular point pattern may vary spatially due to some
covariate influence. The model then suggests that some other process may be at work leading to
the analysis of spatial autocorrelation between the variables. Lastly, the national land cover
datasets ranging from 2001 to 2009 were put through a raster analysis in R Studio which
analyzed land cover change across each of the study regions in comparison to wind turbine

locations.

Results

The results of this study were very useful in understanding the influences that certain
socioeconomic and environmental characteristics have on wind farm placement. The results seen
in (Table 1,2, and 3) provide statistical information about the characteristics in each study region.
The population means were interesting because they compared similarly with an average of
3,000 or more people per census tract, with Texas having the higher average of the two. This
should be assumed since this state is larger in area than the two other study regions. This is
useful because according to the U.S. Census Bureau in 2010 an area is identified as “urban” if
there are more than 2,500 people in an urban cluster or urbanized area. This alone shows that
population is one variable that drives this spatial process. Additionally, from (Table 1,2, and 3)
the House Value from 2010 to 2020 increases. However, this could be due to a multitude of
factors, the housing market increases in value, the price for materials, or maybe some other
process that this study does not dive into. Similar to (Hoen et al., 2009), there is no statistically
significant evidence to show that wind farm development has a significant impact on nearby

house prices.
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On average there are approximately 60-90 wind turbines per project across the study
regions, with the minimum being one and the maximum being about 140 turbines (Table 4). In
Iowa and Oklahoma there are approximately 4,000-6,000 total turbines, whereas, in Texas there
are approximately 17,000 turbines. Texas has a larger surface area than the other two study
regions, so again this is to be expected. In Figures 6, 10, and 14 we see the U.S. wind turbine
dataset overlayed with the joined total houses-built variable. This variable in addition to
population appeared to be the most significant in terms of a geospatial analysis. In lowa, we see
that most of the houses built, surround the urban areas or cities given the relatively low values
not near the wind turbines. Similarly in Texas we see the same thing as most of the wind turbines
are out west in which the census tract shows lower corresponding population values. However, in
Oklahoma this is not the case as higher values of total houses built appear denser throughout and
specifically around some of the wind farm locations. The average distance from wind farm to
adjacent community was approximately 12,000 meters or 7.8 miles (Table 5). Lastly, the
geospatial analysis of wind turbines and wind farms across the study regions showed high point
intensities and small mean nearest neighbor distances (Figures 1 and 2, & Table 6). It was
obvious that the wind farms and wind turbines across the study regions were showed spatial

clustering.

Figures 5, 9, and 13 indicate that the mean number of wind turbines per project appear to
be increasing overtime, especially in the last ten years. Given the increasing number of wind
turbines per project and the visually significant patterns that both population and total houses
built indicate, a possible process may be at work. The Monte Carlo Simulation on the F function
provided a statistically significant result. The wind farms in each of the study regions are

clustered and by testing for complete spatial randomness (CSR), the null hypothesis was rejected
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given the observed value nowhere near the expected value (Figures 8, 12, and 16 & Table 6).
This can also be proven by looking at the mean nearest neighbor distances for all the study
regions and compare against the simulated mean nearest neighbor distances. The mean nearest
neighbor distances and simulated mean nearest neighbor distances are nowhere near each other,
therefore, some other spatial process is at work. The fitted point process models (Table 7) show
the point intensities at the census tract for the “rural” and “urban” classification given by the
criteria from the US Census (2010). These point intensities aim to help identify what spatial
process may be at play. After fitting these models, the results indicate the full model is the best
model to go with (Table 7, highlighted in yellow). The AIC scores were calculated and given that
the full model had the lowest AIC scores, we indicate that the full model is best fit because the
AIC is measure of how well a statistical model fits a data set. This allows for the two variables,
population and total houses built, to be tested for spatial autocorrelation. The results for all three
study regions show a similar statistically significant p-value of less than 0.05 (Table 8 and 9).
However, the R-squared values for all three are very small and would indicate that there is no

linear relationship as it pertains to spatial variance across the study regions.

Lastly, in Figures 7, 11, and 15 the land cover gain and loss for each of the study regions
show that from 2001 to 2019 there have been changes to the land use overtime. In Figure 11 we
see that Oklahoma experiences the most change over that time. However, in lowa and
Oklahoma, there isn’t much change in land use and there are no visually significant observations

in relation to the wind farms, to confidently say there is a process at work.

Discussion

Overall, before this study was conducted it seemed plausible to be able to perform an

analysis of a broad region of wind farms with a variety of socioeconomic and environmental
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variables. However, as the study progressed, I realized the amount of data that this study was
previously going to include just wasn’t possible given the time constraints for this research.
Thus, the study region was narrowed down from eight total states down to three, lowa,
Oklahoma, and Texas. For this purpose of this study, I believe these three study regions were the
best given their history in the wind industry and being the lead producers. Even still, the amount
of data that was used in this study was to much as most of the variables were thrown out. There
were several obstacles along the way as the initial idea for this research quickly evolved as the
data was being analyzed. Initially, the goal was to provide an idea of how certain socioeconomic
and environmental characteristics influence wind farm development. Additionally, given the
expected results, was hopeful to be able to create a model that predicted the likelihood of wind
farm development based off certain variables in the USWTB dataset. This wasn’t possible due to
the dataset being updated frequently and the changes being made, therefore, this study aimed
more towards understanding the potential influences certain characteristics have on wind farm

development.

Unlike other research, this study was focused on the physical factors themselves rather
than the ideas and attitudes of the public. Even though an argument can be made that most of the
barriers engineers and policy makers face stem from the public. This study, however, was able to
piece together some statistically significant results that show that there is some sort of physical
process at work and for reasons that may not be as obvious than by looking at a map. There is
significant proof that the number of wind farms per project are increasing, whether it be wind
farms in general or that the intensity of wind turbines is increasing. There is also reason to
believe that wind farms will continue to be developed in mostly rural areas, away from highly

densely populated areas. While this study, couldn’t provide a prediction it certainly gave an
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opportunity to be studied more harshly and frequently. Additionally, this study compared the
results across all three study regions and though there are still more answers to be had it
demonstrates the ability to study each region individually and understand how this work varies

across the landscape.

There were several limitations in this study. The opportunity to have more time could’ve
perhaps allowed the variables to be studied more deeply. During the analysis process there were
several errors that were brought up in the code used to analyze the data. More knowledge and
practice on the statistical analysis would’ve allowed for a more technical approach. Lastly,
obtaining more statistically significant results, I believe would have enhanced the overall
conclusions in this study. I think for anyone wanting to continue with this study, should consider
the type of data they want to pull, limit the amount of data they are working with, and maybe
conduct the analysis at a smaller level to achieve more statistically significant results this study

aimed for.

Conclusion

A mixed methods approach consisting of two parts, a geospatial and statistical analysis
was utilized to understand the influence socioeconomic and environmental characteristics has on
wind farm development. This study revealed that there is spatial clustering of wind farms in each
of the study regions. In fact, there is more spatial clustering than expected under the null
hypothesis for complete spatial randomness. The Monte Carlo simulation on the F function
showed that the wind turbines are not clustered randomly and rather there is another spatial
process at work. While population and total houses built are two socioeconomic variables that
may have had a significant visual pattern as it relates to wind farm clustering, there was no linear

relationship across the study regions. It is clear that a better understanding of the types of
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socioeconomic variables may prove to be more statistically significant than those analyzed in
this study. Land use change over time also didn’t prove to be statistically significant as there
were no visual patterns in relation to the wind farms to indicate they had an impact on wind farm
development. Additionally, while there has been an increase in House Value in median dollars
over time, there is no evidence that shows wind farms have an impact on house prices. Overall,
this study obtained clear and concise results that can be used by adjacent communities to better

understand the influencing factors on future wind farm development.
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Tables:

Summary Statistics of Socioeconomic and Environmental Characteristic

Min Mean Max
Population 0 3516 15301
Housing Units 0 1571 6346
Education Attn. 0 1749 7880
Bachelor’s Degree or Higher 0 550.5 5136
Employed 0 1799 8642
Employed in Agriculture 0 67.46 603
Houses Built 0 1571 6346
Houses Built 2014 - Later 0 56.75 2237
Houses Built 2010 - 2013 0 46.19 869
House Built 2000 - 2009 0 170.83 2520
House Value 2010 (Median Dollars) 227700 117299 412500
House Value 2020 (Median Dollars) 51400 152084 750000

Table 1: Five number summary of socioeconomic variables in lowa. Data: US Census Bureau.

Summary Statistics of Socioeconomic and Environmental Characteristics

Min Mean Max
Population 0 3277 9906
Housing Units 0 1445 3494
Education Attn. 0 1654 5146
Bachelor’s Degree or Higher 0 437.6 3739
Employed 0 1476 5096
Employed in Agriculture 0 64.2 741
Houses Built 0 1445 3494
Houses Built 2014 - Later 0 56.89 881
Houses Built 2010 - 2013 0 56.3 1177
House Built 2000 - 2009 0 191.3 1537
House Value 2010 (Median Dollars) 17700 105254 415600
House Value 2020 (Median Dollars) 31500 142721 769400

Table 2: Five number summary of socioeconomic variables in Oklahoma. Data: US Census

Bureau.
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Summary Statistics of Socioeconomic and Environmental Characteristics

Min Mean Max
Population 0 4152 19704
Housing Units 0 1612 8846
Education Attn. 0 2154 10541
Bachelor’s Degree or Higher 0 678.7 5905
Employed 0 1952 9196
Employed in Agriculture 0 55.42 1461
Houses Built 0 1612 8846
Houses Built 2014 - Later 0 113.9 3667
Houses Built 2010 - 2013 0 82.97 1822
House Built 2000 - 2009 0 300.9 2187
House Value 2010 (Median Dollars) 15400 133383 981800
House Value 2020 (Median Dollars) 16500 204986 1951500

Table 3: Five number summary of socioeconomic variables in Texas. Data: US Census Bureau.

Study Area Turbine Statistics

Years Constructed Mean # of Turbines Std. dev. # of Turbines Total # of

(Historical) per project per project Turbines
lowa 1992-2021 69.79 51.15 6,148
Oklahoma 1983-2021 65.45 31.01 4,905
Texas 1999-2021 93.93 29.96 17,439

Table 4: History of Wind Turbines. Data: USWTDB from USGS.

Wind Farm Distances from Urban Areas

Min (meters) Mean (meters) Max (meters) Mean (Miles)
lowa 12,222 12,335 15,999 ~7.67
Oklahoma 2,970 12,690 15,990 ~7.88
Texas 1,202 11,398 15,999 ~7.08
Table 5: Community adjacency, distance to wind turbines (meters). Data: USWTDB from
USGS.
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Point Pattern Statistics

Mean Nearest Neighbor Distance (m) Simulated MNND (m)
lowa 558.0749 82615.87
Oklahoma 425.5609 150212.1
Texas 398.3438 122614.2

Table 6: Nearest neighbor distances. Data: USWTDB from USGS.

Point Process Model Statistics

lowa Oklahoma Texas
Point Intensity (Rural) 0.000771167 6.84E-05 9.36E-05
Point Intensity (Urban) 0.001568015 0.001084027 0.000411496
AIC - Null Model (Rural) 51996.98 1823.617 141144.8
AIC - Null Model (Urban) 96537.64 25032.98 231487.5
AIC - Grad Model (Rural) 51689.24 1728.3 137502.7
AIC - Grad Model (Urban) 96505.89 24696.95 224144.6
AIC - Full model (Rural) 51110.34 1458.975 135213.3
AIC - Full model (Urban) 90931.75 21104.85 222790.6

Table 7: Fitted Point Process models. Data;: USWTDB from USGS.

Regression Model Statistical Analysis - Population

lowa Oklahoma Texas
R-squared 0.2485 0.1011 0.1806
p-value <2.2e-16 <2.2e-16 <2.2e-16
egression Model Statistical Analysis - Houses Built
lowa Oklahoma Texas
R-squared 0.1211 0.07803 0.09497
p-value <2.2e-16 <2.2e-16 <2.2e-16

Table 8: Linear Regression model for Population Data: USWTDB from USGS.
Table 9: Linear Regression Model Houses Built. Data: USWTDB from USGS.
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Figure 1: US Wind Turbines. Data: USWTDB from USGS.
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Density of U.S. Turbines

Figure 2: US Wind Turbines Density. Data: USWTDB from USGS.
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Figure 4: Wind speed. Data from NREL.
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Figure 5: Mean number of wind turbines per project in lowa. Data: from USWTDB from USGS.
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Figure 6: Houses Built and Wind farms in lowa. Data: USWTDB from USGS and US Census
Bureau.
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Figure 7: Cropland gain and loss (land cover change) in lowa. Data: from USWTDB from

USGS.
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Figure 8: Monte Carlo Simulation on F function in lowa. Data: USWTDB from USGS.
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Figure 9: Mean Number of wind turbines per project in Oklahoma. Data: USWTDB from
USGS.

27



OK Total Houses Built at Census Tract and Wind Farms

Houses Built

3000
2500
2000
1500
~ 1000
500
0

Mammen

Figure 10: Houses built and wind farms in Oklahoma. Data: USWTDB from USGS.
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Figure 11: Grass Shrub loss and gain (land cover change) in Oklahoma. Data: USGS and
MLCR.
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Figure 12: Monte Carlo Simulation on F function in Oklahoma. Data: USWTDB from USGS
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Figure 13: Mean number of wind turbines per project in Texas. Data: USWTDB from USGS
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Figure 14: Houses Built and Wind Farms in Texas. Data: USWTDB from USGS
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Figure 15: Cropland gain and loss (land cover change) in Texas. Data: USWTDB from USGS
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Figure 16: Monte Carlo Simulation on F function in Texas. Data: USWTDB from USGS
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